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This paper describes a reformulation of the Lighthill (1952) theory of aero- 
dynamic sound. A revised approach to the subject is necessary in order to unify 
the various ad hoe procedures which have been developed for dealing with 
aerodynamic noise problems since the original appearance of Lighthill’s work. 
First, Powell’s (1961 a )  concept of vortex sound is difficult to justify convincingly 
on the basis of Lighthill’s acoustic analogy, although it is consistent with model 
problems which have been treated by the method of matched asymptotic expan- 
sions. Second, Candel(l972), Marble (1 973) and Morfey (1 973) have demonstrated 
the importance of entropy inhomogeneities, which generate sound when acceler- 
ated in a mean flow pressure gradient. This is arguably a more significant source 
of acoustic radiation in hot subsonic jets than pure jet noise. Third, the analysis 
of Ffowcs Williams & Howe (1975) of model problems involving the convection 
of an entropy ‘slug’ in an engine nozzle indicates that the whole question of 
excessjet noise may be intimatelyrelated to the convection of flow inhomogeneities 
through mean flow pressure gradients. Such problems are difficult to formulate 
precisely in terms of Lighthill’s theory because of the presence of an extensive, 
non-acoustic, non-uniform mean flow. The convected-entropy source mechanism 
is actually absent from the alternative Phillips (1960) formulation of the aero- 
dynamic sound problem. 

In this paper the form of the acoustic propagation operator is established for 
a non-uniform mean flow in the absence of vortical or entropy-gradient source 
terms. The natural thermodynamic variable for dealing with such problems is 
the stagnation enthulpy. This provides a basis for a new acoustic analogy, and it is 
deduced that the corresponding acoustic source terms are associated solely with 
regions of the flow where the vorticity vector and entropy-gradient vector are 
non-vanishing. The theory is illustrated by detailed applications to problems 
which, in the appropriate limit, justify Powell’s theory of vortex sound, and to 
the important question of noise generation during the unsteady convection of flow 
inhomogeneities in ducts and past rigid bodies in free space. At low Mach numbers 
wave propagation is described by a convected wave equation, for which powerful 
analytical techniques, discussed in the appendix, are available and are exploited. 

Fluctuating heat sources are examined: a model problem is considered and 
provides a positive comparison with an alternative analysis undertaken else- 
where. The difficult question of the scattering of a plane sound wave by a 
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626 M .  8. Howe 

cyliiidrical vortex filament is also discussed, the effect of dissipation at the vortex 
core being taken into account. 

Finally an approximate acrodynamic theory of the operation of musical instru- 
ments characterized by the flute is described. This involves an  investigation of 
the properties of a vortex shedding mechanism which is coupled in a nonlinear 
manner to the acoustic oscillations within the instrument. The t,heory furnishes 
results which are consistent with the playing technique of the flautist and with 
simple acoustic measurements undertaken by the author. 
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1. Introduction 
Theories of aerodynamic sound 

The theory of aerodynamically generated sound has been reviewed by Ffowes 
Williams ( 1969), who detailed four essentially different and alternative significant 
theoretical developments which have occurred since the appearance of Lighthill’s 
(1952) general theory. The first of these is due to  Liepmann (1954, unpublished), 
who regarded the sound radiated from a turbulent region as driven by an ideal 
boundary which faithfully follows the profile of an instantaneous displacement 
thickness. Apart from the investigation reported in Laufer, Ffowcs Williams & 
Childress (1 964), this approach has not been pursued to any great extent. 

The second is that of Phillips (1960), who devised a theory of sound radiat,ion 
from supersoiiic jets in which convection and refraction in temperature and 
velocity gradients produce substantial modifications of the radiation field. 
Lighthill (1952) had already analyqed the effects of convection a t  low Mach 
numbers. Later Lilley (1958) had made the first serious attempt to ext,end 
Lighthill’s theory to high-speed jets in an effort to explain such features as are 
evident in the experimental results of Atvars, Schubert & Ribner (1965). After 
the appearance of Phillips’ work, Ffowcs Williams (1963) demonstrated that 
many of the important results involving high-speed convection could actually be 
deduced from Lighthill’s acoustic analogy. 

The third important development emerged through the attempts by various 
authors, in particular Crow (1970) and Lauvstad (1968), to formalize the theory 
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of aerodynamic sound by means of the method of matched asymptotic expan- 
sions. Fluctuations within an acoustically compact region of turbulence scale on 
the eddy size I ,  say, whereas the appropriate scale in the far field is the acoustic 
wavelength h = O(Z/M) 9 1 for a sufficiently small turbulence Mach number M .  
The existence of two characteristic length scales in different regions of the flow 
implies that an asymptotic expansion of the disturbed flow in powers of the Mach 
number assumes essentially distinct forms in each of these regions, the forms being 
mutually consistent provided that certain matching conditions are satisfied in an 
overlap region. The major conclusion of this approach in the particular case of an 
isentropic inviscid fluid is that the leading term in the asymptotic expansion of 
the acoustic field generated by a compact region of turbulence arises from the 
Reynolds-stress contribution povivi to theLighthil1 tensor (equation (1 .2)  below), 
in which po is the mean fluid density and v the turbulent velocity that would 
exist if the compressibility of the fluid were ignored. 

Matched asymptotic expansions have been used to solve specific sound- 
generation problems by Miiller & Obermeier (1967), Obermeier (1967), Rahman 
(1971), Crighton (1972) and Cannell & Ffowcs Williams (1973). The formal pro- 
cedure, however, is not free from ambiguity, and some care must be exercised to 
ensure that misleading results are not obtained. The situation in this respect is 
actually more serious than might be concluded from an examination of the 
literature cited above. For example, at  the time of writing, it is apparently not 
possible to treat the relatively simple problem of the scattering of a plane sound 
wave by a compact rigid body. Indeed an application of the general method 
described in the review article of Crighton & Lesser (1974) results in the predic- 
tion of the dipole component of the scattered field, but fails to predict the equally 
important monopole contribution, which is caused by the finite volume of fluid 
displaced by the body, 

The final major alternative mentioned by Ffowcs Williams arises from the 
analysis of the energy balance equations of acoustics undertaken by Morfey 
( I  966). However a significant degree of further development is still necessary if 
this approach is to provide predictions comparable with those of the Lighthill 
theory. 

The acoustic wave operator 

In  Lighthill’s (1952) fundamental paper on the acoustic analogy the momentum 
and continuity equations of fluid mechanics were combined to form 

where p is the fluid density and c the speed of sound in free space. The Lighthill 
stress tensor is defined by 

Tij = pvivj +pii - c2psij, (1.2) 

pij being the compressive stress tensor. 
Equation (1.1) is a nonlinear partial differential equation the exact solution of 

which can be obtained only when use is made of other equations of fluid 
mechanics which relate the pressurep, density p and the velocity vi. But Lighthill 
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argued that, since the propagation of small density perturbations in free space is 
governed by U2p = 0,  the right-hand side of (1.1) may formally be regarded as 
a quadrupole distribution of sources which generate acoustic waves in an ideal 
fluid at  rest. When qj is small except in an acoustically compact region of space, 
the Lighthill tensor specifies in an essentially unambiguous manner the actual 
source of sound. In  more complicated and extensive flow regimes, however, a 
portion of the tensor must be responsible for the refraction and scattering of 
sound by flow inhomogeneities, and this can result in a significant modification 
of the acoustic field. 

In order to avoid these difficulties Phillips (1960) derived the following convected 
wave equation for the logarithm of the pressure field: 

where po  is a reference pressure, S the specific entropy, y = c&, the ratio of the 
specific heat at  constant pressure to that at constant volume, eiii the rate-of-strain 
tensor, 0 the dilatation and ,u is the viscosity coefficient of a Stokesian fluid. The 
fluid was assumed to satisfy the ideal-gas equation p = pRT, T being the tem- 
perature and R the gas constant. The material derivative DIDt is equal to 

Phillips interpreted the terms on the right of (1.3) as acoustic sources. Thus the 
a p t  + vui alax,. 

approach is based on the premise that the convected wave operator 

correctly describes the propagation of small disturbances through a medium of 
variable mean properties. This must be the case at  sufficiently high frequencies, 
but the assumption is without foundation a t  arbitrary acoustic wavelengths. 
Phillips’ equation has also been applied to jet noise by Pao (1971,1973), although 
in view of the doubtful validity of the wave operator the detailed conclusions of 
these analyses may require revision. 

That the fundamental premise of the Phillips theory is suspect was recognized 
by Lilley (see, for example, Lilley 1973), who pointed out that in applications to 
shear-flow problems the source terms on the right of (1.3) actually contain contri- 
butions which are linear in the acoustic perturbation, and should preferably be 
included in the propagation operator. Lilley advanced the view that the correct 
wave operator is obtained when all linear terms in the perturbed flow are taken 
to the left-hand side of the acoustic-analogy equation, and in the particular case 
of slowly diverging shear flows derived a third-order differential equation for the 
pressure perturbation in which the source terms are nonlinear in the fluctuating 
variables. Unfortunately there exist eigensolutions of this equation which 
characterize the basic hydrodynamic instability of the shear layer, and the appli- 
cation of Lilley’s equation to acoustic problems appears to involve an ad hoc 
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decoupling of these instability modes from the acoustic field. The procedure is 
difficult to justify since the properties of the turbulent eddies responsible for the 
generation of sound are intimately related to the shear-layer instability. This 
difficulty does not arise with Phillips’ equation (1.3), although we shall argue 
below that it provides a description of noise generation which is in some respects 
incorrect. 

Doak (1973) has generalized the approach developed by Lilley and obtained 
a wave equation for that component of the momentum potential which he associ- 
ates with the acoustic perturbations. However detailed practical conclusions 
may not be possible, and must await the further development of Doak’s theory. 

Vortex sound and entropy inhomogeneities 

Powell (1961 a,  1964) has proposed a theory of vortex sound in which the vorticity 
within a compact eddy in a weakly compressible, isentropic medium is identified 
as the basic source element in that it is considered to induce the whole flow, both 
the hydrodynamic turbulent field and the acoustic far field. This is an appealing 
point of view since it implies that acoustic sources are associated with regions of 
the flow in which the vorticity vector is non-vanishing, rather than with the more 
extensive hydrodynamic region which arises in Lighthill’s acoustic-analogy 
theory. However, Powell’s ideas have received little attention in the intervening 
period, although Lauvstad (1968, 1974) has, with some justification, cast doubts 
on the validity of the detailed analytical arguments used by Powell. Several 
model problems which have been treated by matched asymptotic expansions 
have actually been shown to be consistent with Powell’s approach (e.g. Stuber 
1970; Crighton 1972; Cannell & Ffowcs Williams 1973), which suggests that it 
ought to be possible to manipulate the equations of fluid mechanics in such a 
manner that Powell’s source term would be seen to be dominant at  low turbulence 
Mach numbers. 

The recent calculations of Candel (1972) and Marble (1973) have illustrated 
that entropy inhomogeneities, produced by non-uniform combustion for 
example, in a jet flow are responsible for a significant proportion of the jet noise 
at subsonic Mach numbers. Morfey (1973) used Lighthill’s theory to demonstrate 
that such sources arise through the interaction of the inhomogeneity with the 
mean flow pressure gradient, and Ffowcs Williams & Howe (1975) have analysed 
in detail the sound generated when an entropy ‘slug’ convects in a mean flow 
through a contraction in a duct or out of a nozzle. It is possible that this source 
mechanism plays a major role in the issue of excess jet noise, and in this respect it 
is significant that, in a situation where mean flow effects are crucial in determining 
the sound output, the mechanism is actually absent from Phillips’ formulation of 
the jet noise problem. 

The contribution of the present paper 

The present paper constitutes an attempt to clarify certain aspects of the rather 
confused picture which emerges from the above summary. We shall do this by 
means of a reformulation of Lighthill’s acoustic analogy whichis capable of dealing 
unambiguously with situations in which there exists an extensive non-acoustic, 
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non-uniform mean flow, for example near a bluff body in an air stream or in the 
region of a contraction in an engine duct. The starting point ($2)  consists of a 
discussion of Crow’s (1 970) penetrating analysis of Lighthill’s theory, from which 
it is concluded that the effective sound-producing region of a compact eddy is that 
in which the vorticity vector o is non-vanishing. In  $$3  and 4 a modified wave 
equation valid for an ideal gas in arbitrary mean motion is obtained in which the 
fundamental acoustic variable is the stagnation enthalpy. This is the thermo- 
dynamic variablewhich emerges as the natural choicein the courseof theanalysis. 
The source terms for this variable are confined to regions of non-vanishing 
vorticity and entropy gradient. 

The remaining sections of the paper are devoted to detailed applications of the 
new wave equation to specific acoustic problems. The range of these applications 
has been restricted to situations in which the mean flow is of small but 
non-negligible Mach number, the problems having been selected to demonstrate 
the power of the theory especially when used in conjunction with the method of 
low frequency Green’s functions (Howe 1975) in order to deal with problems 
involving interactions with rigid bodies. An appendix has been included which 
contains a brief account of the relevant theory of Green’s functions. 

In $ 5  the basic principles of vortex sound are discussed in terms of two 
canonical problems. The first is that of sound generation by a cylindrical vortex 
of elliptic cross-section, which may be regarded as the simplest model of a two- 
dimensional turbulent eddy. The second is an analysis of Crighton’s (1972) 
problem of the sound generated when a line vortex negotiates a path around the 
edge of a rigid semi-infinite plane. Here the theory reveals that the instantaneous 
intensity of the acoustic radiation is determined by the rate at  which the line 
vortex cuts across a hypothetical field of streamlines describing potential flow 
about the half-plane. More general problems associated with the convection of 
turbulent eddies and entropy inhomogeneities through variable-geometry ducts 
and past bluff bodies in free space are then discussed ($5  6 and 7).  These are of 
considerable interest in connexion with the theory of excess jet noise. In  3 8 the 
question of the generation of sound by fluctuating heat sources is examined in 
an attempt to assess the validity of the entropy source terms of the theory, pre- 
dictions for a model problem being shown to be consistent with calculat,ions 
undertaken elsewhere. The difficult question of the scattering of a plane sound 
wave by a line vortex is taken up in $ 9, where a circular cylindrical vortex is 
considered and account is taken of the entropy variation in t8he vortex 
core arising from viscous dissipation within the region of large velocity 
gradients. 

In the final section of the paper ( 3  10) we present a detailed aerodynamic theory 
of the operation of a musical instrument such as the flute. A vortex shedding 
model of the acoustic source mechanism is examined. The intensity and properties 
of the vorticity are coupled to the flautist’s blowing pressure and to the acoustic 
cross-flow velocity at the mouth of the flute, and are determined by means of a 
nonlinear consistency condition during the course of the analysis. The model, 
though undoubtedly crude, apparently explains several of the practical tech- 
niques employed by the flautist in playing his instrument. The discussion of this 
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section demonstrates the power and elegance achieved by conducting the analysis 
in terms of the stagnation enthalpy variable and the appropriate low frequency 
Green’s function. 

2. Sound radiation by a compact turbulent eddy 
Crow (1970) has considered the radiation of sound by a compact vortical eddy 

region of low Mach number M and of typical length scale 1. The wavelength of the 
sound generated h = O(Z/M) greatly exceeds the dimensions of the eddy, and the 
question of describing the flow in various parts of the fluid can then be posed in 
terms of a singular perturbation problem in which quantities in the eddy region 
are scaled on the length 1 and the time 11. (u being the root-mean-square turbulent 
velocity), the appropriate length scale in the acoustic region being A. 

By this means Crow demonstrated that the leading term in the asymptotic 
expansion for the acoustic field of a compact eddy located in an isent,ropic medium 
a t  rest is obtained by approximating the Lighthill tensor by 

T.. 13 = p  0 V.V. Z 13 (2.1) 

where po is the undisturbed, constant mean density of the fluid. The velocity v is 
the divergence-free, vortically generated fluid velocity defined by means of the 
following argument. 

Consider an incompressible inviscid flow characterized by the vorticity clistri- 
bution o. Since the resulting velocity is divergence free i t  is entirely determined 
by o, and is actually given in terms of the vector potential A by 

1 
v = curl A, A = - /*d3y. 

477 Ix-Yl 

It is a straightforward matter to deduce that v = O(m*/1xI3) as 1x1 +a, provided 
that the integral 

m* = J y ~ ~ a 3 y  (2.3) 

converges. But for an initially bounded region of vorticity in an isentropic 
medium, Kelvin’s theorem, which asserts that vortex lines move with the fluid 
particles, ensures that the vortical region will be bounded a t  any subsequent 
time, and that the integral in (2.3) is always well defined. This is a purely kine- 
matic result which does not depend on the initial hypothesis that the flow be 
incompressible. 

Thus in the aerodynamic sound problem Crow dofined the total fluid velocity u 

u = v+V$, (2.4) 
by 

where v is given in terms of the vorticity by (2.2). Thus divv = 0. The potential 
function $ is determined in terms of the density fluctuations of the medium by 
means of the continuity equation 

p-lDp/Dt+V’$ = 0. (2.5) 
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Now in the region of the eddy flow 

so that (2 .5)  implies that 

in the eddy region. 

Lighthill's equation (l.l), we obtain for the acoustic perturbation density 

@ = O(ZuM2) (2.6) 

Next consider the implications of Crow's result (2.1). Inserting this into 

where use has been made of the free-space Green's function given'_in equation 
(A 4) of the appendix. Using the identity 

a2vi vj/8xi axj = div (o A v) + V2( &v2) (2.8) 

t,his becomes, in the usual manner, 

provided that 1x1 1. 
Consider first the second integral in this result, I,, say. In  the leading approxi- 

mation we may neglect retarded-time variations over the region where v2 is 
significant, provided that this does not prejudice the convergence of the integral. 
But v(t ,  y) = O(m*/ly13) for large IyI, so that no convergence difficulties will arise. 
Thus we have 

a2 p ( t -  IxI/c, Y)d3Y (2.10) 
1 

1 2 r - -  
4nc41x1 at2  

for 1x1 3 1. 
The order of magnitude of this expression can be estimated as follows. Using 

the velocity representation (2.4), the inviscid isentropic momentum equation can 
be expressed in the form 

= - W A V - W A V $ ,  
at at 

(2.11) 

Take the scalar product of this equation with v, and recall that divv = 0 to 
obtain 

(2.12) 

Integrating over all space and applying the divergence theorem, the contribution 
from the second term on the left vanishes because 
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tends to zero at  least as fast as I Y I - ~  as JyI +a. Hence 

(2.13) 

The integration on the right is confined to the bounded region of the flow in 
which the vorticity is non-vanishing, so that its contribution may be estimated 
as being of order 

use having been made of (2.6). Hence 

(2.14) 

Considering next the vortical integral 11, say, in (2.9), the leading approxima- 
tion here, viz. 

vanishes identically because the integrand can be expressed through (2.8) as 
a divergence. Higher-order approximations are obtained by expanding the 
integrand in powers of the retarded-time element x. y/clxl, a procedure which is 
valid provided that the vortical region is compact. The first term in such an 
expansion gives 

from which we have 

(2.16) 

Thus Il 9 I, for small turbulence Mach numbers M .  Using the estimate (2.16) 
in (2.9) leads directly to Lighthill's (1952) us law, which is seen to depend for its 
validity on the non-vanishing of the moment integral in (2.15). 

The above discussion has thus led us to the view, first proposed by Powell 
(1961 a) ,  that the dynamical source of sound in low Mach number turbulence can 
be identified precisely with those regions of the flow in which the vorticity vector 
is non-vanishing. Explicitly, it appears that in the far field density perturbations 
can be calculated by means of the acoustic analogy embodied in the equation 

a2p/at2 - c2V2p = po div (o A v), (2.17) 

where the term on the right-hand side is calculated on the assumption that the 
flow is incompressible. 

Actually this conclusion was foreshadowed in Lighthill's second fundamental 
paper (Lighthill 1954), in which it was pointed out that in subsonic jet flows the 
terms omitted from Ti3 in arriving at the approximation in (2.17) are equivalent 
to an octupole and a term proportional to c - ~  a@ divv)/at. The acoustic contribu- 
tion of the latter is of order (a/Z3) (Z/lxl) Me, where cr is the volume of space in 



634 M .  S.  Howe 

which the source is significant. The above discussion reveals that CT is essentially 
restricbed to the region of non-vanishing vorticity. 

Equation (2.17) has been derived for the rather special case of an isolated 
vortical region located in free space. It would be surprising if this conclusion were 
materially altered by the presence in the flow of scattering surfaces, although i t  
is not immediately apparent how the more general result can be established on 
the basis of Lighthill’s acoustic analogy. The analyses of $5 3 and 4 will attempt 
to resolve this issue by means of a reformulation of the acoustic analogy in which 
the stagnation enthalpy, rather than the density, assumes the role of the 
fundamental acoustic variable. 

3. Propagation of sound in an irrotational mean flow 
The aerodynamic theory of sound associates the generation of noise with the 

presence of random distributions of vorticity and entropy inhomogeneities 
within a flow. I n  this section we shall be concerned with establishing the 
propagation! properties of the sound. Therefore we shall initially assume that 
vorticity and entropy inhomogeneities are absent from the mean flow, and this 
implies, also, that viscosity and heat-conduction effects can be ignored. 

Suppose that in t,he presence of an arbitrary distribution of scattering bodies 
the fluid is in a state of compressible irrotational mean flow specified by the 
velocity potential $,(x). Suppose further that an irrotational disturbance is 
introduced into the flow by the application of an impulsive force or otherwise, 
and let the perturbation in the potential be denoted by Q1(x, t ) .  Set 

Q(x, t )  = + b l ( X ,  t ) .  (3 .1)  

We shall derive the equation satisfied by $(x, t ) .  

possesses a first integral of the usual form 
The equation of conservation of inomentuni in an irrotational isentropic flow 

The equatioiyof continuity of mass is 

where 

(3.2) 

(3.3) 

Since viscosity and heat conduction are negligible, the density and pressure 
variat,ions within a fluid part)icle are related by 

DplDt = c2Dp/Dt, (3.4) 
where c is the speed of sound. 

Equations (3.2) and (3.4) imply that 
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Hence, eliminating p-lDp/Dt between (3.3) and ( 3 4 ,  we obtain 

Within the restrictions of the present hypotheses this equation is exact and 
nonlinear. But the potential function # defined in (3.1) contains both the steady 
component of the velocity field and the perturbation field. The distinguishing 
feature of the two components is that only the perturbation potential is time 
dependent. In  order to emphasize this time dependence it is appropriate to take 
the partial time derivative of (3.6).  This has the advantage that in many situa- 
tions it is legitimate to assume that 

In differentiating (3.6) partially with respect to time we shall, in order to avoid 
complications which are examined in detail in the next section, suppose that the 
speed of sound is time independent. Then it is a simple matter to deduce that 

= &$/at is small. 

(3.7) 

where D/Dt = a/at + v.  a/ax and v = a@x = a#,/ax + a+,/ax. Hence it follows 
that tho equation satisfied by d can be set in the form 

02 DV a 
-+-.--c2v2 Dt2 Dt ax 

If the steady mean flow specified by q50(x) is known, then (3.8) constitutes a 
nonlinear equation describing the propagation through the compressible medium 
of time-dependent perturbations. The terms which are nonlinear in describe 
the self-modulation of the perturbation wave field. In the acoustic approximation 
(3.8) can be linearized with respect to the perturbation potential, and since this is 
the only time-dependent component of the flow this is equivalent to neglecting #1 

wherever it appears in the propagation operator. Let U = Vo0, then in this case 
we have 

In particular, if U2 < c2, the second term on the left of this result may be 
dropped, and 4 then satisfies the convected wave equation 

(3.10) 

This is the form used by Howe (1975) and by Ffowcs Williams & Howe (1975) 
in their treatments of the generation of sound by convected flow inhomogeneities. 
At  sufficiently small mean flow Mach numbers the irrotational velocity field U is 
essentially divergence free, and solutions of (3.10) satisfy a reverse-flow reciprocal 
theorem (see appendix), which leads to a significant simplification of the analysis 
of certain flow-surface interaction problems. In  this respect the perturbation 
potential is the natural variable with which to conduct the analysis, since the 
pressure and density perturbations do not satisfy the classical convected wave 
equation, even at  low mean flow Mach numbers. 
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4. A reformulation of the acoustic analogy 
The analysis of the previous section indicates that it might be appropriate to 

express the wave equation for acoustic disturbances in an arbitrary mean flow in 
a form which is similar to (3.8). Unfortunately the procedure adopted there 
involved the use of the Bernoulli integral (3.2), which is valid only for points of 
the flow exterior to entropy and vorticity inhomogeneities. The difficulty in the 
present case arises because it is no longer possible to assert that perturbations in 
the fluid motion can be described by means of a scalar potential $ alone. 

Actually it was more convenient to employ 4, rather than $, as the perturbation 
quantity in 9 3, since this emphasizes the temporal variations characteristic of an 
acoustic field. The Bernoulli integral (3.2) reveals that this is equivalent to 
adopting 

as the acoustic variable. In  the absence of sound B is constant throughout the 
mean irrotational flow. It may be identified with the stagnation enthalpy per unit 
mass of an isentropic fluid. 

In an arbitrary flow field the density p cannot normally be specified as a func- 
tion of the pressure alone, so that a generalization of (3.8) will necessarily involve 
a widening of the definition of B. This can be done by introducing the specific 
heat function w (Landau & Lifshitz 1959, chap. l), which is related to the pressure, 
density, temperature and specific entropy introduced in 5 1 by the differential 
equality 

The generalization of (4.1) to all points of the flow is therefore effected by means 
of the definition 

(4.3) 

which is the thermodynamic potential describing the specific stagnation enthalpy 
or heat function. 

In  the following discussion we shall assume that it is legitimate to neglect the 
effects of viscous dissipation and heat conduction, although the latter restriction 
will subsequently be removed. Then at points exterior to flow inhomogeneities 
and where the mean temperature of the medium is uniform B must satisfy (3.8). 
With these restrictions in mind we now proceed to derive the general equation 
determining the stagnation enthalpy B. 

dw =p- ldp+TdS .  (4.2) 

B ( x ,  t )  = w + &J', 

First express the momentum equation in Crocco's form 

av/at+gradB = -or \v+TgradS,  (4.4) 

where v now denotes the total fluid velocity (cf. Liepmann & Roshko 1957, p. 193). 
Since the entropy of a fluid particle is conserved in the absence of viscous dissipa- 
tion and heat conduction, the equation of continuity becomes 

(pc2)-l Dp/Dt + div v = 0. (4.5) 
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Take the divergence of (4.4) and the partial time derivative of (4.5) and subtract: 

-V2B = div{oAv-TgradS}. 

Next we tentatively write this in the form 

D 2 B + L E . E - V 2 B  = div(wAv-TgradS} 27% c2 Dt ax 
1 D ~ B  1 DV aB a i DP + - - - - - - - +(- c2 - Dt2 c2 Dt 'ax at ( pc2 Dt )) ' (4.7) 

The left-hand side of this equation resembles the left-hand side of (3.8), but it 
must be borne in mind that it may be necessary to augment the left side of (4.7) 
with terms linear in B which arise because of variations in the speed of sound 
[assumed constant in the derivation of (341 .  

The problem now consists of attempting to simplify the last term on the right 
of (4.7). In doing this we shall assume further that the fluid satisfies the ideal-gas 
equation 

p = pRT. 
First observe that from (4.4) 

DV a~ av DV DV - -- _ _ _  __-  . [o A v- TgradS], Dt'ax a t '  Dt Dt (4.9) 

and substitute this result into the right-hand side of (4.7). The remaining terms 
involving v, B and p can then be expressed in terms of the derivatives of p alone, 
using (4.8), the entropy equation Dh'lDt = 0 and the momentum and continuity 
equations. In  this way the right-hand side of (4.7) is eventually reduced to 

1 D v  
ca Dt 

div {o A v - T grad S}  - - - . [o A v- TgradS] -- - - 
Now 

and hence 

D w D  D B  
Dt Dt Dt ' 

=-+-(i.v2) G - (4.10) 

(4.11) 

a term linear in B which arises because of the variation in the speed of sound in 
the fluid. It should properly be incorporated into the wave operator on the left 

Taking all of these points into consideration we finally reduce (4.7) to the form 
of (4.7). 

1 D v  
c2 Dt = div(w A v- TgradS}-- -. [w A v- TgradS]. (4.12) 



638 M .  S.  Howe 

Within the confines of an inviscid non-conducting ideal-gas theory, this equa- 
tion is exact. Note that the material derivative DIDt involves t’he actual fluid 
velocity and not merely that of a mean flow. 

In  certain applications to be described below we shall be particularly interested 
in situations in which it is not possible to leave out the effects of heat conduction. 
In  this case DSlDt no longer vanishes, and the equation of continuity assumes 
the form 

(4.13) 

where cp  is the specific heat a t  constant pressure. Proceeding as in the above 
analysis, we deduce that the equation which relates the variations in the stagna- 
tion enthalpy to the vorticity w and specific entropy S is now 

1 Dv 

(4.14) 

At point,s of the flow exterior to vorticity and entropy inhomogeneities, the 
terms on the right of (4.12) and (4.14) vanish identically, and the irrotational 
perturbation flow equation (3.8) is obtained, but with account taken of the varia- 
tions in the sound speed. The linearized form of that equation describes the propa- 
gation of small acoustic disturbances in the mean irrotational flow. The Lighthill 
(1952) acoustic analogy is based on just such an ident,ification of part of the 
general Navier-St’okes equation with the wave operator n2 in space devoid of 
vorticity and entropy fluctuations. It is natural therefore to pursue such an 
analogy in the present case. The terms on the right-hand sides of (4.12) and 
(4.14) then assume the roles of inhomogeneous acoustic source terms, but they have 
the distinctive property of being confined solely to regions of the flow where the 
vorticity and entropy-gradient vectors are non-vanishing. When the charac- 
teristic Mach number is sufficiently small and the flow is isentropic, the second 
term on the right of (4.12) may be neglected and, in the absence of a mean flow, 
that equation then reduces essent,ially to Powell’s result embodied in (2.17). 

Boundary conditions and energy flux 

Many of the applications of (4.12) and (4.14) described in the following sections 
will involve the interaction of a flow field with a rigid surface. I n  most cases the 
inhomogeneous source terms will be localized in free space, so that in the im- 
mediate vicinity of the surface Crocco’s equation (4.4) becomes 

&/at +grad B = 0. (4.15) 

It follows that on the rigid surface the normal derivative aB/an of the stagnation 
enthalpy must vanish. The one exception to this rule which we shall examine is 
considered in 0 8. 
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Let us also note that the energy equation for an ideal, inviscid, non-heat- 
conducting fluid has the form 

aE/at +div [pvB] = 0 (4.16) 

(Landau & Lifshitz 1959, p. 12), where 

E = =$pv2 +PS 

= kinetic energy per unit volume +internal energy per unit volume. 

Thus in particular applications the acoustic energy flux can be obtained from the 
general energy flux vector pvB.  

5. The principles of vortex sound 
In this section we shall apply (4.12) to solve two relatively elementary problems 

of acoustics, one of which has been examined elsewhere. The first is that of sound 
generation by a cylindrical vortex of elliptic cross-section in a weakly compres- 
sible fluid. This is perhaps a more realistic model of a two-dimensional eddy than 
that which consists of the pair of spinning vortices treated by Obermeier (1967) 
and Stuber (1970). The second problem is that already solved by Crighton (1972) 
by matched asymptotic expansions, and involves the determination of the sound 
radiated during the passage of a line vortex around the edge of a rigid half-plane. 
We shall examine this with the aid of the theory of low frequency Green’s func- 
tions discussed in the appendix. This method has the distinct advantage over the 
formal matching procedure of enabling the solution to be cast naturally into a 
physically meaningful mathematical form which gives a general indication of the 
mechanism associated with the generation of sound by turbulence located in the 
vicinity of a rigid body. I n  both of these applications we shall be concerned with 
low Mach number disturbances in an isentropic fluid. In this case we need retain 
only the Powell dipole source div (w A v) on the right of (4.12). 

Radiation of sound by an elliptic vortex 
Consider a cylindrical region of elliptic cross-section within which the fluid has 
uniform vorticity L2 per unit area in a direction parallel to the axis of the cylinder. 
The latter is assumed to lie along the i = 3 axis of a rectangular co-ordinate 
system (i = 1 , 2 , 3 )  in which (i, j, k) denote unit vectors parallel respectively to 
each of these axes. The ellipse is only slightly deformed from a circle of radius a, 
with semi-mejor and semi-minor axes respectively cqual to a( 1 & e )  (0 < e < 1). 

If nQ/c is sufficiently small the flow in the region of the vortex is essentially 
incompressible and the polar equation of the ellipse can be expressed in the form 
(Lamb 1932, p. 231) 

where R = (.;+xi):. When E = 0 the flow exterior to the vortex is steady 
( B  = constant) and no sound is emitted. When e is small but finite, however, the 
elliptic cross-section of the cylinder spins about its axis with angular velocity isZ, 
and the unsteadiness induced in the flow radiates as sound. 

R = a{i + 8 cos r2e - 4nt]), (5.1) 
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We now linearize the wave operator on the left of (4.12) about the mean flow. 
At the same time the material derivative D/Dt may be approximated by the 
partial derivative a/at provided that Ulc < 1, where U = $an is the maximum 
value of the mean flow speed, which occurs at the boundary of the vortex core. 
Hence (4.12) reduces to 

{ c - ~  a2/at2 - V2) B = div (a A v). (5 .2 )  

Within the vortex core the vorticity is given by 

o = Qk 
and the flow velocity by 

(5.3) 

v = - $QR[sin 8 +€sin (0 - *at)] i + *QR[cos 8- E cos (8 - @t)] j (5.4) 

(5 .5 )  

(Lamb 1932, p. 231)’ so that 

w A v = - +Q2x + &Q2R[i cos(8 - &&It) - j sin (8 - &&)I, 
where x = (x1,x2). 

To simplify the details of the analysis we first determine the effective multipole 
strength of the acoustic source term div (w A v) by multiplying the right-hand 
side of (5.2) by a ‘test’ functionf(x), say, and integrating over a typical cross- 
section of the vortex. Thus we consider 

1 = / d i v ( w ~ v ) f ( x ) d ~ x  

= - I W  AV.vfd2X 

the expansion in curly brackets being about the origin (xl, x2) = 0. 

found to be given by 
Using (5.1) and (5.5) the leading time-dependent term in this expansion is 

with i a n d j  ranging over the 1 and 2 directions only. 
It follows from this result that the time-dependent part of the acoustic source 

term is given in the leading approximation by the line quadrupole distribution 

(5.8) div (O A V) N a2{qj8(x1) S(X,)}/~X~ axj. 

The acoustic field is now obtained by convoluting this result with the free-space 
Green’s function associated with the wave operator on the left of (5.2) (see equa- 
tion (A 4) of the appendix). Introducing the vortex core strength K = gnu2 we 

where (xl, x2) = R (cos 8, sin 8). 
In  the acoustic far field, W / c  9 1, this integral can be evaluated by the method 

of stationary phase. Noting also that in this problem the acoustic pressure 
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perturbation p is related to the acoustic component of the stagnation enthalpy 
by p = po B, we finally deduce that 

(;)* ( 1 :( 5)) €(27r)* 
p 2 : - - p o ~ 2 ~ %  - COB 2e+-- -  t - -  , 

8 
(5.10) 

where M = U/c  and GRlc B 1. 
This is the expected form of the radiation field of a two-dimensional eddy 

(cf. Ffowcs Williams 1969), in which the perturbation pressure decays inversely 
as the square root of the distance R, and in which the mean-square pressure level 
has a characteristic U4M3 parametric dependence on the eddy velocity. The 
acoustic frequency is twice the rotation frequency of the elliptic vortex core, and 
the instantaneous directivity has the quadrupolar cos 28 dependence on the angle. 

Radiation from vortex interaction with a rigid halfplane 
The two-dimensional example treated above illustrates the manner in which the 
dipole source div (w A v) in free space is actually acoustically equivalent to a 
quadrupole distribution, in accordance with Lighthill’s (1952) theory and the 
discussion of 5 2. The situation is generally different, however, when the vortical 
region is located in the vicinity of a rigid body. Now the turbulent velocity 
fluctuations exert an unsteady force distribution on the body whose instanta- 
neous resultant integrates to zero only in special circumstances, exhibited, for 
example, by an infinitely extended flat plate. In this case the scattered sound 
field is typically of the more powerful dipole type considered in the next section. 

It is also known (Ffowcs Williams & Hall 1970) that turbulence located near 
a sharp edge of an extensive boundary, such as a rigid semi-infinite sheet, provides 
an even more powerful source of acoustic radiation. The simplest definitive 
example of this which is amenable to analysis is that discussed by Crighton (1972). 

A concentrated line vortex with its axis parallel to the edge of a semi-infinite 
rigid plate is generated at  a distance from the edge which is large compared with 
the shortest distance of the vortex from the plate. If the vortex strength K is 
sufficiently small and the circulation is in the appropriate sense, the vortex moves 
under the action of an image distribution in the plate along the path illustrated 
in figure 1 and given by the polar equation 

R, = asec(i8,). (5.11) 

The motion of the vortex is essentially steady when it is located far from the 
edge, but sound is emitted as it passes around the edge. We assume that K is 
small enough that a typical acoustic wavelength is always large compared with 
the distance of the vortex from the edge of the plate. The dominant instantaneous 
frequency is determined by the angular velocity 8, of the motion, and it follows 
easily that the compactness condition imposes the following restriction on the 

Ulc << 1, (5.12) 
characteristic Mach number: 

where U = ~/47ra and a is the distance of closest approach of the vortex to the 
edge of t,he plate. 

With the x3 axis parallel to the edge of the plate (directed out of the paper in 
figure 1), denote the position of the vortex in the 1 , 2  plane at  time t by x,(t), so 

41 F L M  71 
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FIGURE 1. A vortex filament negotiates the broken-line path about the edge of a rigid 
semi-infinite half-plane occupying zp = 0, z1 < 0. The instantaneous intensity of the radi- 
ated sound is proportional to the rate a t  which the vortex cuts across the hypothetical field 
of parabolic streamlines which describes irrotational flow about the half-plane. 

that the vorticity vector is w = KkS[X - x,(t)] .  The vortex velocity v = $ ( t ) ,  and 
in the low Mach number approximation the acoustic field is determined by (5,2), 

w A v = Kk ~ k , ( t )  .6{x - xo(t)}. (5.13) where 

The low-frequency two-dimensional scattering Green’s function for this 
probleni is determined in the appendix, and is given by 

(5.14) 

where the observation point x in the 1,2 plane is located many wavelengths from 
the edge of the half-plane, R = 1x1 and 

$*(x) = Rising8 (5.15) 

is a potential function which describes irrotational incompressible flow about the 
half-plane. 

Applying this to the dipole source term (5.13), the far-field acoustic perturba- 
tion pressure is given by 

= -K4*(X)[k.koAV@*], (5.16) 7TR 
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where the quantity in square brackets is evaluated a t  the retarded position 
xo(t - R/c) of the vortex. 

Now ko A V#* = - (ko . V#) k, where # is the stream function conjugate to 4 *  
for potential flow about the half-plane. Hence 

a result which can also be expressed in the form 

(5.17) 

(5.18) 

It is a simple matter to confirm that this agrees with the prediction based on 
matched expansions obtained by Crighton (1972). The formula (5.18) is more 
explicit than Crighton's result, however, and reveals that sound is generated only 
during the period in which the vortex is cutting across the streamlines of a hypo- 
thetical potential flow about the sharp edge. The vortex moves parallel to these 
streamlines when it is far from the edge, and no sound is generated. I n  the vicinity 
of the edge the vortex path departs considerably from that of the potential flow, 
and the rate a t  which the vortex traverses the streamlines determines the 
instantaneous intensity of the scattered sound. This radiation mechanism is 
analogous to the generation of electromagnetic waves which occurs when an 
electrical conductor cuts across magnetic lines of force. 

The sin $0 angular dependence on the observation position in (5.18) is typical 
of radiation directivities associated with half-plane scattering problems. Also, as 
Crighton has pointed out, the total energy radiated by the vortex during its 
passage about the edge is proportional to the third power of the velocity, which is 
typically O(M-3) greater than that radiated during the characteristic lifetime of 
a two-dimensional eddy located in free space. 

6. Low Mach number convection of turbulence past scattering bodies 
We now proceed to examine more general situations in which turbulence is 

convected in a low Mach number, irrotational mean flow in the neighbourhood of 
a rigid body. The theory of compact scattering bodies interacting with stationary 
elements of turbulence is well known and is documented in Ffowcs Williams 
(1 969). At low turbulence Mach numbers the mean-square radiated pressure level 
varies parametrically with the sixth power of the turbulent velocity fluctuation. 
The effect of convection past a rigid body is essentially different from the Doppler 
amplification which occurs when acoustic sources are convected in free space. 
Indeed, in view of the work of Morfey (1973) and Ffowcs Williams & Howe (1975) 
on the noise generated during the accelerated motion of nominally silent entropy 
inhomogeneities, there are serious grounds for believing that the unsteady 
motion of the turbulent element will generate sound possibly of more signifi- 
cance than has hitherto been supposed, especially in the context of excess jet 
noise. 

41-2 
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FIGURE 2. A turbulent eddy is convected in a low Mach number, irrotational, steady 
flow through a contraction in a hard-walled duct of infinite extent. 

We shall consider isentropic flows in which the only important source term is 
the Powell dipole div (o A v) on the right of (4.12). The turbulent element is 
assumed to be compact and the mean irrotational flow field to have a Mach 
number M satisfying iM2 < 1.  This implies that the mean flow is effectively 
incompressible with a constant speed of sound. Under these circumstances (4.12) 
may be approximated by the convected wave equation 

($ (; + U .$)2 - V2] B = div (w A v), 

where the mean flow velocity satisfies div U = 0. 
Consider first the problem depicted in figure 2. A hard-walled duct of infini e 

extent contains fluid of density po in a state of steady incompressible irrotational 
flow. The flow is in the + x1 direction and accelerates through a contraction over 
which the uniform cross-sectional area of the duct reduces from A ,  to A ,  and the 
mean flow velocity increases from U, to U,, with A ,  U, = A ,  U,. 

A low Mach number turbulent eddy is convected in the mean flow and it is 
required to determine the sound which is radiated downstream as the turbulence 
accelerates through the contraction, a problem which may be regarded as 
modelling the generation of sound far upstream of a nozzle. I n  the case of a duct 
of uniform cross-sectional area, it is known (Ffowcs Williams 1969) that the 
intensity of the acoustic radiation within the duct is proportional to the sixth 
power of the characteristic turbulent fluctuation velocity. We shall be interested 
in field strengths in excess of this, associated with the effect of acceleration 
through the contraction. 

The eddy is assumed to remain compact during this process. The velocity 
within the eddy has two components: 

v = u + u ;  (6.2) 

u is the fluctuation velocity induced by the vorticity and effects of images in the 
walls of the duct, and satisfies w = curlu. 

Equation (6.1) can be solved with the aid of the low frequency Green’s function 
given in equation (A 16) of the appendix, provided that the acoustic wavelengths 
involved are large compared with the diameter of the duct. This is certainly the 
case for sufficiently low Mach numbers. Thus, for an observation point x located 
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many wavelengths downstream of the contraction, the perturbation stagnation 
enthalpy is given by 

where a quantity in square brackets is evaluated a t  the retarded time 

t-x,/c(l +M,) .  

Observing that U is proportional to V#*, and using the vector identity 
o A u = u .Vu - V(Qu2) and the low Mach number approximation divu = 0, 
equation (6.3) can be reduced to 

since V2$* = 0. In the appendix it is shown that $*(x)-++xl as xl-++oo, so 
that we may write 

Also, for x1 + L, the scale of the duct contraction, the acoustic pressure and the 
perturbation stagnation enthalpy are related by 

since the perturbation velocity is just equal to p/poc. Hence acoustic pressure 
waves radiated downstream have the form 

This expression reveals that the sound may be regarded as generated as a 
consequence of the work done by the turbulent Reynolds stress pouiuj in the 
rate-of-strain field aUJayj + al@yi of the mean flow. The result (6.7) remains 
valid even in the absence of a mean flow (U, = O ) ,  since the straining field is 
actually a geometrical property of the duct in much the same way as the hypo- 
thetical streamlines were a property of the half-plane considered in § 5. 

For sufficiently high convection speeds the turbulence is effectively frozen as 
it passes through the contraction, and sound is generated as the steady Reynolds 
stress is swept through the variable rate-of-strain field of the mean flow. 

Note that the mean-square radiated pressure level predicted by (6.7) is O(u4), 
which is O(M-2) greater than that generated by turbulence in a uniform duct. 
Also (6.7) vanishes identically when the turbulence is located sufficiently far 
from the contraction, where the straining mechanism ceases to be important. 
A frozen turbulent field generates no sound at such points; for an evolving eddy 
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lo 
FIGURE 3. A turbulent eddy is convected in a low Mach number, irrotational, steady flow 

past a fixed solid in free space. 

it is necessary to proceed to  the next approximation in order to determine the 
O(flf2u4) mean-square radiated pressure levels already discussed. 

The remaining principal effect of the mean flow in (6.7) arises from the mixed 
Doppler factor (1 +MI)  (1 +$A,). Thus there is no significant modification of t,he 
amplitude of the acoustic field due to flow since the scattered sound always scales 
on the eddy fluctuation velocity u rather than that of the mean flow. To examine 
this question further me next consider the case of the convection of turbulence 
past a compact rigid body in free space. 

A compact turbulent eddy in free space radiates according to Lighthill's ziB law, 
and when i t  is located in the neighbourhood of a compact body in the absence of 
a mean flow the radiation is proportional to u6 (Ffowcs Williams 1968). In  
figure 3 a turbulent eddy is convected in an irrotational incompressible flow past 
the rigid body; the flow velocity is equal to U, at large distances from the body. 
In  this case (6.1) can be solved by means of the low frequency Green's function 
given in equation (A 13) of the appendix. 

Thus the scattered radiation has the form 

where 5 is the potential of incompressible flow about the body in which the flow 
at great distances from the body is of unit speed in the i direction, and where, in 
the notation of the previous problem, v = U+u.  The quantities in square 
brackets are evaluated at the retarded time t - (1x1 - M,. x)/c, the origin of the 
co-ordinate system being located close to t,he body. 

Introduce the dimensionless velocity 

17: =-(("-Mo) a .Y).  
a Y i  1x1 

This quantity describes an irrotational flow about the body and tends asymp- 
totically to x/lxl -M, at large distances, where i t  is actually parallel to the 
normal to the wave fronts arriving a t  the observation point x. It is the only term 
in (6.8) which characterizes the instantaneous directivity of the scattered sound, 
which is seen to be that of a dipole. 
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As before, the contribution to (6.8) from the rotational component u of the 
eddy velocity v can be expressed in the form 

(6.10) 

Noting that B N (p /po )  (1  +M, .x/IxI) and placing the partial time derivative 
under t'he integral sign, we find 

This contribution to the sound field is analogous to the result (6.7) obtained 
in the duct problem. Again the radiation is due to the effective rate of working 
of the turbulent Reynolds stress in a rate-of-strain field characteristic of the 
shape of the body. Radiation also occurs when the turbulent field is effectively 
frozen as it convects past the body. The mean-square acoustic pressure levels 
vary in proportion to u4M& M, being the mean flow Mach number. 

The contribution to (6.8) which arises from the mean convection velocity 
component U of v can similarly be reduced to  the form 

-Po (6.12) 
21 4nclxl ( l+M, .x / lx l )  

When the radiation direction x/lxl is parallel to U,, the vector V(x.Y/IxI) is 
parallel to the local mean velocity U and the integrand in (6.12) vanishes identi- 
cally, and consequently there is no radiation from this component of the scattered 
field in the directions parallel to the mean flow. In  other words the dipoles distri- 
buted over the surface of the solid are always arranged in such a manner that the 
resultant dipole has no component in the mean stream direction. This accounts 
for the absence of this term from the duct problem, since a dipole source can 
radiate in a duct only if the axis of the dipole has a component parallel to the duct. 
The mean-square acoustic pressure determined by (6.12) is proportional to 
u 2 U i J l i ,  which exceeds the contribution from (6.11) provided that U, > u. Note 
also that when the turbulent eddy is located far from the body the terms U and 
V(x .Y/lxl) in the square brackets in (6.12) are constant, and radiation occurs 
only if Dw/Dt is non-zero. Since the eddy is essentially incompressible, 
DwJDt = a(ujwi)/axj, a divergence which integrates to zero in the approximation 
of (6.12). Thus at these points it is necessary to take the next approximation to 
the Green's function, in which case we recover the Lighthill Ua radiation intensity 
law. Similar remarks apply to the result (6.11). 

The above analysis can be applied qualitatively to the problem of sound 
generation by a turbulent wake if the mean flow Mach number is sufficiently 
small. In  this case the rotational velocity u is comparable with the mean flow 
velocity, although the translational velocity of a typical vortical core is small 
until vortex shedding occurs. When this happens the core accelerates to a velocity 
comparable with that of the mean flow and a sound pulse is radiated. The periodic 
nature of these events is responsible for the characteristic Aeolian tones a t  the 
vortex shedding frequency (see, for example, Blokhintsev 1946, p. 112). Our 
analysis indicates that the dominant radiation is in directions at right angles to 



648 &I. S.  Howe 

the mean flow. This is in accordance with the observed dipole nature of the 
Aeolian tone. The dipole axis is perpendicular to the mean flow and corresponds 
to a fluctuating lift force, the mean-square radiated pressure varying as Ug M i .  

7. Generation of sound by entropy inhomogeneities 
The presence of entropy inhomogeneities in a jet flow, produced, for example, 

by non-uniform combustion processes, is responsible for the generation of sound 
when the inhomogeneities accelerat'e in the pressure gradient of the mean flow 
(Morfey 1973). Candel (1972) and Marble (1973) examined this mechanism in 
quasi-one-dimensional flows by first decomposing the inhomogeneities into a 
spectrum of harmonic entropy waves. Two methods of analysis were employed. 
The first considered the interaction of each entropy wave with compact elements 
of the mean flow (e.g. a contraction in a duct), a procedure which is expected to 
be valid when the lengths and transit times are small compared with the wave- 
length and wave period. The second approach was based on the assumption that 
the variat,ion in the mean flow parameters could be regarded as one-dimensional. 
It is not possible, however, to  treat by these methods problems involving the 
convection of sharp-fronted entropy spots, in which the characteristic scale of the 
entropy variation is much smaller than that of the mean flow. 

Ffowcs Williams & Howe (1975) considered the problem of sound generation 
when an entropy slug completely filling a compact section of a duct is convected 
in a low Mach number flow through a contraction in the duct. The analysis 
involved an  application of the generalized Kirchhoff theorem developed in 
Ffowcs Williams & Hawkings (1969). Unfortunately their method cannot easily 
be extended to deal rigorously with the more general problem of entropy spots. 

It is actually possible to handle these problems with relative ease using the 
general equations (4.12) and (4.14). Confining attention to low Mach number 
flow situations, and neglecting the contribution to  the radiated sound due to the 
presence of vorticity in the flow, the appropriate approximation to the acoustic- 
analogy equation assumes the form 

{$ (a + U .L)2 - V2] B = - div (Tgrad S), (7.1) 

where heat conduction within the fluid has also been neglected. 

Specijcation of an entropy spot 

I n  the absence of thermal conduction and viscous dissipation we shall consider 
a low Mach number mean flow which is isentropic, irrotational and of density po. 
We consider an entropy spot in the form of a region of fluid bounded by a closed 
surface f(x,t) = 0 within which the specific entropy is constant and different 
from that in the mean flow (figure 4). The pressure must be continuous across the 
bounding surface, which is therefore characterized by a jump in the temperature 
and density of the fluid. Using the thermodynamic relation 



The theory of aerodynamic sound 649 

f~x,t~=opJn Po 

FIQURE 4. The entropy inhomogeneity is bounded by the surfacef(x, 8 )  = 0, across which 
the pressure is continuous, but the temperature and density of the fluid me discontinuous. 
The specific entropy is uniform within the entropy spot, and the ambient flow is isentropic. 

for an ideal gas, it  follows that the discontinuity across the surface is specified by 

Y - 1  

Thus, if p is the fluid density within the spot and Ap = p -po, then 

since 

(7.3) 

in an ideal gas, where n is the unit normal to the surface f(x, t )  = 0 illustrated 
in figure 4. 

Hence (7.1) becomes 

( 2 ( a t + U . ~ ) Z - V 2 ) B  l a  = -div[($) 1Vfli(f)n/*]. (7.5) 

Po 

Convection in ducts and past rigid bodies 
We now apply (7.5) to problems of the type already considered in connexion with 
convected turbulence inhomogeneities in $6.  

Consider first the model in figure 2, in which an entropy spot is convected by 
the mean flow through a contraction in a duct. The source term on the right of 
(7.5) is time dependent only in the vicinity of the contraction, which is therefore 
the source of the acoustic radiation. The typical time scale of the unsteady motion 
is of order L/u and at low mean flow Mach numbers the corresponding acoustic 
wavelengths are large, so that (7.5) can be solved using the low frequency Green’s 
function of equation (A 16). 

Thus at an observation point x located many wavelengths downstream of the 
contraction we have 
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where the second integral is taken over the bounding surface of the entropy spot 
and the quantity in square brackets is evaluated a t  the retarded time 
t - x,/c( 1 + M2). Transforming this integral by means of the divergence theorem, 
and recalling that V2$* = 0 and that Ap/p may be assumed constant in the first 
approximation, we have 

(7.7) 

the integration being over the volume u of the entropy spot. 
If the diameter of the entropy spot is small compared with the scale of variation 

of the mean pressure gradient and Ap/p is small it follows from (7.7) in the usual 
manner that the acoustic pressure perturbation far downstream of the contraction 
is given by 

_" (A,+A2)(1+M1)(1+M2) (")'p] p A,U, Dt ' (7.8) 

the material derivative being evaluated at the retarded position of the entropy 

This result displays the same dependence on the area ratio and mean flow 
Doppler factors as the corresponding formula (6.7) for a vortical inhomogeneity. 
However the mean-square radiated pressure level now scales on U4, where U is 
a characteristic mean flow speed. The presence of the material derivative con- 
firms the prediction that radiation occurs only where the mean flow pressure 
field varies along the trajectory of the inhomogeneity. We also note that our 
general formula (7.6) is in agreement with the result obtained by Ffowcs Williams 
& Howe (1975) by a different method for the particular case of an entropy slug. 

The above calculation can be repeated for the case of low Mach number convec- 
tion in an irrotational flow past a solid obstacle in free space (figure 3). The 
procedure follows closely the method outlined in the previous section, and it is 
readily deduced that the scattered acoustic enthalpy perturbation is given by 

spot. 

(7.9) 

The second integral in (7.9) is taken over the bounding surface of the entropy 
spot,, the quantity in square brackets being evaluated a t  the retarded time 
t -  Ixl/c+Mo.x/c. 

Using the divergence theorem, and introducing the dimensionless velocity U$ 
defined in (6.9)' the scattered acoustic pressure field can be expressed in the form 

(7.10) 

This formula shows that when Ap/p is small the mean-square acoustic pressure 
scales on (AP/P)~ M t  U;, or equivalently (AT/T)2 Mg U;, where AT is the tem- 
perature difference between the entropy spot and the ambient flow, and indicates 
that this noise-producing mechanism is possibly more significant than pure jet 
noise a t  low subsonic flow speeds. 
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When the formulae (6.11), (6.12) and (7.10) are applied to the case of a rigid 
body translating a t  uniform velocity in a fluid which is at rest at  infinity, so that 
the interaction involved is with a nominally stationary flow inhomogeneity, it is 
appropriate to express the radiated field in terms of the position of the observa- 
tion point relative to the body at the time of emission of the sound. The results 
are clearly recognizable as dipole radiation fields augmented by three powers of 
the Doppler factor (1 -2MT)-l, 4 being the component of the Mach number of 
the velocity of the body in the direction of emission of the sound. This contrasts 
with the two Doppler factors associated with a translatingpoint dipole source, and 
has also been observed in a different context by Howe (1975), Crighton (private 
communication) and Ffowcs Williams & Lovely (1 975). 

8. Sound generation by fluctuating heat sources 
In  this section we examine the validity of the acoustic-analogy equation 

(4.14) in situations where it is not permissible to neglect the conduction of heat 
in the fluid, although w-e shall still assume that viscous effects are unimportant in 
the source region. The relaxation of the condition of no thermal conductivity 
implies that the entropy of a fluid particle is not necessarily constant in time. As 
a fluid element moves within the flow it will absorb heat energy a t  a rate equal to 
pTDS/Dt per unit volume. In  the absence of viscous dissipation this can also be 
expressed in terms of the temperature gradient within the fluid by means of 

pTDX/Dt = div ( K  grad T), (8.1) 

where K is the thermal conductivity of the fluid (Landau & Lifshitz 1959, p. 185). 
Consequently all of the entropy source terms on the right of (4.14) are now of 
significance. 

We proceed to consider the simple model problem of the generation of sound 
by periodic temperature fluctuations of a body immersed in a fluid at rest. The 
problem can also be solved by an alternative procedure, and the calculation will 
thereby provide a tentative check on the validity of (4.14). 

The surface temperature of a rigid body immersed in the fluid is caused to 
vary periodically at a radian frequency w .  If there is no mean flow (8.1) implies 
that the oscillations in the temperature are communicated to the fluid in the 
form of thermal waves which are rapidly damped within a boundary-layer region 
whose width is of order ( x / w ) i ,  where x = K/p,,c, is the thermometric conductivity 
of the fluid. This heating is accompanied by a periodic expansion and contraction 
of the fluid within the boundary layer, as a result of which there is a pulsating 
mass flux through a mathematical control surface which just encloses the body 
and the boundary layer. These pulsations give rise to a sound wave in the distant 
field, the body behaving as a monopole source. 

When the acoustic wavelength greatly exceeds the boundary-layer width, i.e. 
when w < c2/x ,  the characteristics of the sound can be determined in two stages. 
In  the neighbourhood of the body the fluid may be assumed to be incompressible, 
the density variations arising solely from the changes in volume due to periodic 
heating essentially at  constant pressure. The periodic mass flux through the outer 
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edge of the boundary layer can then be determined by means of the equation of 
continuity and matched onto a radiating sound wave (Landau & Lifshitz 
1959, p. 287). Our object here is to obtain the acoustic field directly from 
(4.14). 

Now the equations of continuity and (8.1) together imply that the velocity 
fluctuation a t  the outer limit of the boundary layer is of order (q)* (ATIT), where 
AT is the amplitude of the temperature fluctuations in the body and T is the 
mean temperature. I n  order to ensure that acoustic propagation is correctly 
described by a linearized wave operator we shall therefore assume that variations 
in the thermodynamic quantities are of first order. Thus, neglecting the vorticity 
terms on the right of (4.14) and linearizing with respect to the thermodynamic 
variables, the acoustic equation becomes 

where S' denotes the fluctuating component of the specific entropy. In  the distant 
field S' vanishes identically, and in the absence of a mean flow B N PIP,,. Also, 
since in the same approximation Crocco's form of the momentum equation (4.4) is 

av/at +grad (B  - TS') = 0, (8.3) 

it follows that the boundary condition to be satisfied by B - TS' on the fixed 
surface of the body is the usual one of vanishing normal derivative. 

Since there is no mean flow (8.2) may be approximated further by 

where B - TS has been replaced by its far-field representation in terms of the 
acoustic pressure perturbation p .  

Consider the case of a plane rigid wall whose temperature varies periodically 
with frequency w < c2/x .  Neglecting the small fluctuations in pressure near the 
wall (cf. Landau & Lifshitz 1959, p. 287), (8.1) can be used to show that 

S' = c,(AT/T) exp { - iwt - (1 - i) xl(w/2x)4}, (8.5) 

where the x1 direction is normal to the wall. The acoustic waves are one- 
dimensional, and the appropriate Green's function for (8.4) which satisfies the 
condition of vanishing normal derivative on x1 = 0 is 

G(x1,y,; t , 7 )  = qC{~(t-~-l~l-Yll/c)+~(t-~-I~l+Yl~I~)). (8.6) 

Hence the acoustic pressure field is given by 

(8.7) 
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provided that w (< cz/x. This result agrees precisely with that obtained by Landau 
& Lifshitz (1959, p. 287),  who used the method of matched expansions. This 
provides provisional confirmation of the acoustic-analogy equation (4.14). 

The problem of the radiation from a rigid sphere whose temperature varies 
periodically can also be solved with relative ease. The entropy fluctuation close 
to the sphere is given by 

where R is the radius of the sphere and the origin of co-ordinates is located at  the 
centre of the sphere. The low frequency Green's function for this problem, which 
is appropriate if oR/c is small, is given in equation (A 13) of the appendix, from 
which we deduce that the radiated pressure field is given by 

x exp { - iw(t - lxl/c + x . Y/clxl)}  d3y, (8.9) 

where Y = y{1 +R3/2IyI3}. 
Hence we have 

AT R w R ( 2 w ~ ) t  ' 21 - (-) (-) i) (' -k (I  - i) R ( w / 2 ~ ) 4  )exp[-io(t- ~ x ~ / c ) ] .  Po T 1x1 ( 1 -  
(8.10) 

This result illustrates the manner in which the dimensions of a finite body enter 
the problem. The second term in the curly brackets can be neglected provided 
that the width of the thermal boundary layer is small compared with the radius R 
of the sphere. 

The method described in this section can also be applied to more sophisticated 
problems such as the theory of the Rijke tube, in which entropy fluctuations are 
produced by the acoustically coupled periodic transfer of heat from a hot gauze 
located within the stream of air in the tube. 

9. Scattering of a plane wave by a cylindrical vortex filament 
Lighthill (1 953) and Kraichnan (1 953) examined the scattering of sound by 

turbulence in the Born approximation, and the subsequent extensive develop- 
ment of the theory is reported in Chernov (1960) and Tatarski (1961). The 
multiple scattering and absorption of long waves has been discussed by Crow 
(1967), and Howe (1973) has considered the multiple scattering of sound by 
turbulence in terms of a kinetic equation. Paradoxically, perhaps, the problem 
of the scattering of a plane sound wave by a cylindrical vortex filament has not 
been resolved satisfactorily. 

The difficulty arises because of the long-range scattering effect associated with 
the (radius)-l decay of the mean vortex-induced flow. This is manifested by the 
divergence of the integrals of the Born approximation in certain scattering 
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directions. Muller & Matschat (1959) avoided this difficulty by artificiallg intro- 
ducing a finite cut-off radius beyond which the mean flow of the vortex could be 
ignored. In a recent study by O'Shea (1971) the Born approximation was applied 
directly with no cut-off and the scattered field was observed to be singular in the 
forward and backward scattering directions. 

In  order to clarify the situation from the point of view developed in this paper, 
we shall consider the case of scattering by a circular cylindrical vortex of radius a 
and vorticity s1 per unit area. In  real fluids the formation of a concentrated vortex 
core is inhibited by the diffusive action of viscosity. Therefore the specific entropy 
is generally higher in the core than in the exterior potential flow, and the model 
we shall adopt will be one in which the specific entropy within the core is uniform 
but different from that in the isentropic ambient flow. 

If heat conduction and viscous effects are neglected during scattering, the 
stagnation enthalpy is determined by (4.12): 

1 Dv 
c2 Dt = div{oAv-TVS}+- -.TVS', (9.1) 

where only the leading vortical term has been retained on the right-hand side. 
This equation shows that there exist two distinct mechanisms of secondary-wave 
formation. First,, cross-product terms on the left-hand side involving the incident 
wave B,, say, and the steady, undisturbed stagnation enthalpy distribution B,, 
give rise to a scattered field centred solely on the vortex core. Similarly there is 
a vortex-centred scattered field arising from the  discontinuity in the speed of 
sound across the bounding surface ofthe vortex, and from the perturbation of the 
inhomogeneous terms on the right-hand side of (9.1) produced by the inicident 
wave. Second, the wave operator involves the mean flow and causes the sound to 
be refracted. However, if the wavelength of the incident sound greatly exceeds 
the radius a of the vortex, a.nd if the maximum Mach number of the mean flow is 
small, U / c  = as1/2c < 1, refraction is unimportant, and the effect on propagation 
of the second term on the left of (9.1) may be neglected and the material deriva- 
tives replaced by a/at. 

The incident wave satisfies 
(C;Z a 2 / a t 2  - v2) B, = 0, (9.2) 

where co is the speed of sound in the exterior potential-flow region. It follows that 
the scattered acoustic field B' is determined in the first approximation by the 
equation 

($ ;--V2) B' = div{w/\v,-T'V#}- (9.3) 

where vI and TI are respectively the perturbation velocity and temperature 
associated with the incident wave. 

Let the undisturbed axis of the vort>ex core lie along the x3 axis, with the 
vorticity vector parallel to the corresponding unit vector k, and assume that the 
incident pressure wave is specified by 

p = p I  exp { i ~ ( q  - coot)}. (9.4) 
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This wave propagates parallel to the x1 axis. The source term TI V S  is evaluated 
from the relations V S  = - cp  Vp/p and TI = p/pc,, so that the scattered radiation 
is given by the solution of 

(-$-$-Vz) B' = a d i v  
Po Po 

(9.5) 

In this equation po is the density in the exterior flow and po + Ap that within the 
core; f(x) = 0 is the equation of the unperturbed bounding surface of the vortex, 
with f > 0 in the exterior fluid and f < 0 within the core, and the discontinuous 

1 1  k H ( - f ) .  
function 

---=- 
c2 cg cg Po 

In the distant field the scattered waves are given by 

where R = (x; + x;)& and the y3 integration has been performed by the method of 
stationary phase. 

Since the problem is two-dimensional the scattered pressure waves decay as 
the inverse of the square root of the distance R from the axis of the vortex. In  
the 1, 2 plane, 8 denotes the angle between the + x1 axis and the observation 
direction. The first term in the curly brackets in (9.6) is a vortically induced 
dipole scattered field with axis perpendicular to the direction of propagation of 
the incident wave. The second term arises because of the variation of the specific 
entropy of the fluid in the vortex core, i.e. as a result of dissipation processes. It 
has the characteristic dipole structure already encountered in $ 7 ,  and is a 
consequence of the fact that the acceleration experienced by the core in the 
pressure gradient of the incident wave is different from what i t  would have been 
had the density been uniform. The net acoustic effect is therefore equivalent to 
the application of a fluctuating body force to the ambient fluid at the vortex axis 
(cf. Rayleigh 1945, $5  296, 335). 

The long-wave approximation used in deriving (9.3) is analogous to the 
Rayleigh approximation used in the theory of the scattering by compact bodies 
in a flow (see, for example, Howe 1975). At shorter incident wavelengths, how- 
ever, it is still appropriate to regard the source of the scattered waves as residing 
in the vortex core (provided that the incident wavelength exceeds or is of the 
same order as the core diameter), but ray theory should be applied to describe 
propagation in the ambient mean flow. This view of the scattering mechanism 
finds some support in the beautiful interferograms of Naumann & Hermanns 
(1973)) which show the interaction of a shock wave with a vortex field. 
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10. An aerodynamic theory of the flute 
I n  this final section we sketch the details of an approximate analysis of the 

mode of operation of wind instruments characterized by the jute and recorder. 
The mechanism by which part of the kinetic energy of a stream of air which is 
blown across the mouth (or ‘embouchure’) of the flute is communicated to the 
resonant oscillations of the air within the instrument is generally thought to be 
associated with the generation and shedding of vortices. When the thickness of 
the incident jet of air is small compared with the diameter of the mouth, as in the 
flue organ pipe, vortices are formed because of the instability of the jet to small 
disturbances (Rayleigh 1880). I n  that case the action of the lip of the mouth on 
which the jet impinges is similar to that which occurs for the classical edge tone 
(Brown 1937; Curle 1953; Powell 1961 b ;  Backus 1970), although the frequency 
of generation of vortical instabilities is set by the sounding frequency of the pipe 
rather than by the effective length of the stream of air. 

Simple order-of-magnitude estimates based on Rayleigh’s (1880) results indi- 
cate, however, that in the case of instruments such as the flute and recorder the 
acoustic frequencies involved are too large for the corresponding characteristic 
disturbances of the air stream to be unstable, so that the growth of vorticity by 
the usual edge-tone mechanism tends to be inhibited. This view is consistent 
with the detailed stroboscopic observations of Coltman (1968), in which the 
vortices are actually formed at the lip of the mouth. The experiments of 
Richardson (1931) reveal that a distinct source of vortices is associated with the 
cross-flow through the mouth produced by the standing acoustic wave within 
the instrument. Periodic flow separation occurs a t  the lip, and the resulting free 
vortex sheets roll up to form periodically shed vortex elements. 

In  the present discussion we shall neglect completely the possibility of jet 
instability in the formation of the vortices, and adopt a model based on 
Richardson’s mechanism of vortex formation. We shall also neglect dissipation 
due to viscous and heat-conduction effects a t  the walls of the instrument, 
although experiments indicate that in the case of the flute this is far from insignifi- 
cant (Coltman 1968). The idealized mathematical model is depicted in figure 5 ,  
which shows a cylindrical rigid tube of length 1 which has an open end B and 
a mouth A .  The diameter of the tube and of the mouth are assumed to be small 
compared with the relevant acoustic wavelengths. The air stream which excites 
sound waves within the tube is in the direction AB a t  a constant speed U .  (The 
flute is actually blown in the crosswise direction, but this has no appreciable 
influence on the sounding mechanism discussed below.) 

The mathematical details of the analysis can be separated into three stages. 
We shall be dealing with the excitation of sound waves in a flow of negligible 
Mach number by vorticity located in the vicinity of the mouth A .  Thus acoustic 
waves satisfy the following approximation to (4.12): 

( c - ~  a2/at2 - V2) B = div (o A v). (10.1) 

The vortical source term is determined both by the incident air stream of 
speed U and also by the cross-flow a t  the mouth, which in turn depends on the 



The theory of aerodynamic sound 657 

U-L 0 
A B 

FIGURE 5. Mathematical model of the flute consisting of a hard-walled cylindrical tube 
open at the end B and the mouth A .  The incident air stream of speed U is directed against 
the lip 0. 

properties of the acoustic field within the tube. Thus v and o are unknown 
initially and must be determined during the course of the analysis. This calcula- 
tion is described in stage 11. In order to determine the acoustic field in free space 
and within the tube, appropriate forms for the Green’s function G(x, y; t ,  7 )  for 
sources located at A must be obtained. This is done in stage I. In  the final stage 
(111) the results of stages I and I1 are combined to determine the effective source 
strength on the right of (10.1) and the acoustic radiation in free space. 

Stage I :  the Green’s functions 

The acoustic wavelengths involved are always large compared with the diameters 
of the mouth A and the opening B, so that only the low frequency forms of the 
Green’s functions are required. We first obtain the Green’s function for radiation 
into free space. 

By the reciprocal theorem discussed in the appendix we may consider a 
harmonic source S(x- y) e-iot located at  the distant point x in free space, the 
origin of the co-ordinates being taken in the vicinity of the mouth A .  The time- 
harmonic Green’s function 9 ( x ,  y; t ,  w )  is the solution of 

(10.2) 

subject to the condition of vanishing normal derivative on the solid boundaries 
and the radiation condition a t  infinity. The function 9 may therefore be regarded 
as the potential of a velocity field, and the reciprocal theorem asserts that the 
value of 9 as a function of y determined by (10.2) is identical with that which 
would arise at  x if the source had been located at  y. 

Let gi denote the spherical wave 

(10.3) 

which is generated at  x and is incident on the flute. For 1x1 
located in the nearjield of A (wlyl/c < l),  (10.3) becomes approximately 

I y I ,  and for points y 

gi = Z,{l -iKX. y/lxl} ,  (10.4) 

where (10.5) 

The dominant acoustic wavelengths are of the order of the length 1 of the tube, 
i.e. wl/c = O(l ) ,  so that, if 1 denotes the vector distance from A to B, then for 

F L M  71 42 
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points y located in the near field of the orifice at B, the appropriate form for the 
incident spherical wave is given by 

Secondary waves are scattered a t  the tube. In  general the scattered field is 
very weak (Rayleigh scattering) unless the frequency of the incident wave is close 
to one of the resonant frequencies of the tube, in which case the dominant sources 
of t'he scattered radiation are the openings at A and B. We are principally 
interested in this case, and shall assume that the main component of the scattered 
sound consists of two spherical waves emanating respectively from A and B. I n  
the vicinity of these points the field must be determined essent,ially by the 
properties of an incompressible reciprocating potential flow. 

Thus, a t  points in the ext,erior fluid located well within an acoustic wavelength 
of the mouth A but many mouth diameters from A ,  we can write 

(10.7) 

where t,he second term on the right is the scattered spherical wave and rA = I Y I .  
Differentiation with respect to time is equivalent to multiplication by - iw ,  so 
that (10.7) can also be expressed in the approximate near-field form 

9 2 z A {  1 - ZKX . y/lxl> + ~ K $ A  + $B/rA,  (10.8) 

At A a different form for 9 must be employed to take account of the precise 
where $A = ~ $ ~ ( t ) .  

details of the essentially incompressible flow at  the mouth. Thus we write 

9 2: ZA (1 -iF . [Y +$?(Y)l)  +a$z*(y) +$P(t), (10.9) 

where y + +:( y) is a potential function whose normal derivative vanishes on t,he 
walls of the tube and which satisfies 

XI 

Y + 0 ( r i 2 )  in free space, 

Y+$?(Y)-+ y"{yl+d/K,} a t  points within the tube many I mouth diameters from A ,  

where the y1 axis is taken in the direction A B .  The cross-sectional area of the tube 
is denoted by d. The constant vector y" is known in principle, and K ,  is a 
characteristic conductivity of the mouth A (cf. Rayleigh 1945, ch. 16). Similarly 
Qf(y) is a potential function normalized such that 

d / 4 m A  in free space, 
" ( ' ) + { y 1 + d / K 2  within the tube. 

(10.1i) 



T h e  theory of aerodynamic sound 659 

This function describes irrotational incompressible flow into the tube at  A ,  and 
K ,  is the Rayleigh conductivity of the mouth A .  

Our objective is a description of the properties of the Green's function 9? in the 
neighbourhood of A ,  and in principle this is provided by (10.9) once the para- 
meters ct and ${ have been determined. 

At  points in the exterior fluid located several mouth diameters from 8 ,  
equation (10.9) reduces to 

(10.12) 

It is anticipated that ct = O(ZAZ/s$) and corresponds to the component of 3 
associated with the resonant modes in the tube. 

Since (10.8) and (10.12) are alternative representations of the field in the region 
of space considered, it follows that 

i K $ A  = $f, $A = cts4/4n, 

so that 6,f = iKC?d/47T.  (10.13) 

Consider next the fluid motion within the tube. In  the body of the tube this 
has the form of the standing wave 

9 = c e i K Y i  + D e - iKYi ,  (10.14) 

say. Near the end A this is approximately given by 

9 Z (C+D)+Z'KY1(C--) +..., (10.15) 

which must be equivalent to  the corresponding terms in the asymptotic form of 
(10.9) within the tube, viz. 

( 10.16) 

Hence 

To complete the analysis determining ct and $0" it is necessary to supplement 
(10.13) and (10.17) by repeating the above matching procedure at  the end B of the 
tube. To do this we express the acoustic field in the exterior fluid at  B in the form 

9? E Z,{i - ~ K x .  (y - l)/(x(} ++,(t -rB/c) /rB 

E ZB{l - ~ K X .  (y  - l)/lxJ) + i~+, + $,/rB, (10.18) 

where +B G $&) and rB = I y - 11. 

potential 
The flow in the vicinity of the open end B is specified approximately by the 

K X  
(10.19) 

42-2 
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where +:(y) and @(y) are harmonic functions analogous to +F(y) and $:( y) 
wit,h asymptotic expressions of the form 

and 

} (10.20) 
y - 1 + O(rg2)  in free space, 

Y - l + + : ( Y ) 4 - {  yB(yl - I - d / K 3 )  within the tube 

The time-dependent parameters /I and 
analysis. 

(10.21) 
in free space, 
within the tube. 

$: are to  be determined from t>he 

Carrying through the appropriate matching procedure a t  B as described above 
then leads to the following system of consistency equations: 

$f = - i ~ / I d / 4 ~ ,  

The procedure now consists of calculating a and q5: from the six simultaneous 
equations (10.13), (10.17) and (10.22). The analysisis tedious but straightforward, 
and will not be reproduced here. Actually i t  is considerably simplified without 
any real loss in generality if all of the terms involving the conductivities K,, K,, 
A’, and K ,  are neglected. The principal effect of these terms is associated with 
the ‘end corrections’ a t  A and B, which modify the usual ‘organ pipe’ resonant 
frequencies of the tube. The corrections are small provided that the blockages 
a t  A and B are not too great. When this approximation is introduced the 
expression for a is found to be 

(10.23) 

where 0 is t,he angle between the vectors x and 1. 

in the vicinity of A are given by 
Thus the leading terms in the low frequency expansion of 9 for points y located 

Recalling the definition (10.5) of Z,, the reciprocal theorem implies that 
(10.24) is also the potential at the far-field point x due to a harmonic point source 
a t  y. Multiplying (10.24) by (27r)-1 efwr and integrating over all real w then leads 
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to the following expression for the low frequency Green's function for source 
points y near the mouth A :  

x W nsin F ( t - T - y ) ] e x p (  - ~ ( t - T - y ) ] .  n2ncd 

n = l  
(10.25) 

The first term on the right of this result is of the same form as the free-space 
Green's function, but with the source position y in the argument of the delta 
function modified by geometrical constraints imposed by the mouth A .  This 
term is non-resonant, and is responsible for transient features of the scattered 
sound. The remaining terms account for the coupling with the resonant modes 
within the tube. It is clear from the retarded time dependence that the second 
term represents the field radiated from the open end B and the third term gives 
the radiation from A .  The latter is actually composed of two components, the 
second of which arises only after the initial impulse within the tube has been 
reflected a t  B and returned to A .  Both of the resonant contributions to the 
Green's function involve the characteristic frequencies of the tube, but unlike the 
delta-function pulse of the transient term, they are sharp-fronted disturbances 
with relatively extensive tails determined by the relaxation time 2Z3/{nn2cd} of 
the particular resonant mode. In the present approximate theory, this decay is 
due entirely to radiation damping. 

The calculation outlined above may now be repeated in order to determine the 
acoustic field within the tube due to a point source located at the mouth A .  The 
details and the approximations involved are very similar to those already 
described and will not be recorded here. We merely note that the result of such an 
analysis gives the following approximate expression for the time-harmonic 
Green's function : 

9(x, y ,  t ,  w )  = - #:( y) sin (: (xl - 1)) e c i U t / d  sin($ ( I  + i gl)), (10.26) 

where the source point y is located near A and x1 is several mouth diameters 
within the tube from A .  

The real-time form of the Green's function is obtained by multiplying (10.26) 
by (2n)-1ei*' and integrating over all w ,  and this gives 

1 @ ( y )  sin { ~ c - ~ ( x ~  - I)) exp [ - iw(t  - 7)] dw 
G(x, y ;  t ,  T )  -- 2n s 

&sin (: (1 +%)] i w d  

nn2cd 
C 

(10.27) 
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This result exhibits the expected features. The first term in the curly brackets 
in the summation is a resonant wave propagating in the + x1 direction and arises 
after the shortest possible arrival time t-7 = X J C .  The second such term 
represents a mode propagating in the 1 - x1 direction, and the arrival time 

t - 7 = (21 - X l ) / C  

shows that i t  is initiated by the reflexion of the initial pulse from the end B of 
the tube. The exponential factor represents the relaxation of wave modes in the 
tube due to radiation from the open ends. If  this is neglected the two Fourier 
series sum to equal but opposite constant values, in which case the wave reflected 
a t  B completely annihilates the incident pulse. When both sets of waves are 
established, i.e. for t > 7 + (2Z - xl)/c,  (10.27) assumes the standing wave form 

Stage 11: t?Le vortex shedding model 

The dipole source term div (w A V) in (lo. 1 ) must be determined on the basis of 
an idealized mathematical model, and the procedure we shall adopt is closely 
related to certain calculations which have been performed in connexion with the 
formation of leading-edge vortices for slender delta wings (Brown & Michael 
1955; Smith 1959). Specifically, i t  will be assumed that the principal features of 
the vortex shedding mechanism are contained in the local two-dimensional 
problem depicted in figure 6. 

In this model the mouth -4 is rectangular with sides of length 2s parallel to 
the tube AB. The transverse dimension of the mouth (into the paper) is of lengthd. 
The fluid motion in the vicinity of the mouth is taken to be two-dimensional and 
in the I, 2 plane, that  of the paper, the local geometry of the tube being approxi- 
mated by an  infinite plane containing a slit of width 2s. I n  figure 6 the mean flow 
U is in the + z1 or i direction. Suporimposed on this, however, is a time-dependent 
cross-flow produced by the sound field in the interior of the tube, which is 
assumed to be specified by incompressible potential flow through the slit. Such 
a flow is singular a t  the lip 0 a t  which the air stream is blown, and in a real fluid 
the associated large velocity gradients produce a significant viscous effect, the 
flow actually separating at the edge and resulting in the formation of a spiral 
vortex sheet which develops in time. We suppose that an adequate representation 
of this vortex field is obtained by assuming that i t  rolls up into an intense vortex 
core (cf. Brown 85 Michael 1955; Smith 1959). 

Two further idealizations are now introduced. The first is that, as fur as the 
ycneration of vorticity is  concerned, the cross-flow velocity through the slit may 
be taken to be constant in time for each half-cycle of the acoustic mode under con- 
sideration. Thus, if V denotes the average cross-flow velocity in the plane of the 
slit in such a half-cycle, so that the corresponding volume flux is 2sd Ti,  then the 
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FIGURE 6. Two-dimensional model of vortex shedding. Flow in the mouth A is modelled 
by the two-dimensional irrotational theory of the flow through a slit in an infinite plane. 
The mean cross-flow velocity V is assumed to be constant for the purpose of calculating 
the properties of the vortex core, and reverses direction a t  the end of each half-cycle of 
the acoustic oscillation. 

complex potential w describing the potential flow through the slit is given 

w = E l n  n (( 1 +;) + [ (1 +:)2- l]+] (10.29) 

(Lamb 1932, p. 73), where z = x1 + ix, and the origin of the co-ordinates is taken 
at the lip 0. Figure 6 illustrates bhe situation during a half-cycle in which the 
cross-flow is directed out of the mouth A .  

Second, i t  will be assumed that during the period in which the vortex core is 
exciting sound within the tube it is located sufficiently close to the lip 0 that 
[ z / s [  < 1. Then (10.29) becomes approximately 

w = (V /n )  (2sz)k (10.30) 

Thus in the absence of vortex shedding the flow potential near the lip 0 has 
the form 

ZOO = uz + ( V/n)  (2sz)k (10.31) 

Let zo = S, + i X 2  f R e i i  be the complex position of the vortex core a t  time t ,  
and let I' = r ( t )  be the vortex strength, then the additional potential due to t,he 
vortex which must be added to (10.31) to give the total velocity potential is 

(10.32) 

Combining (10.31) and (10.32), the vortex strength r is now chosen to ensure 
that the flow velocity remains finite a t  the lip 0 (Kutta condition), from which it 
follows that 

(10.33) 

Reference to figure 6 reveals that  the minus sign in (10.33) is consistent with the 
expect,ed direction of the rotational flow. 

The motion of the vortex is determined by subtracting the vortical self- 
potential - ir In ( z  - zo) from wo + wl, the resulting expression being the velocity 
potential for the core motion. This leads to the following pair of equations for the 
vortex path: ,TJ--(-J v 2s' t cos $$ cos 6 -- - 

at 8n R sin2+$ 
1 (10.34) 
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Consider the situation during a half-cycle in which the cross-flow is directed 
out of the mouth A .  At the beginning of this half-cycle, at t = 0, say, the flow 
velocity jumps to the constant value + V; the flow subsequently changes sign 
discontinuously a t  the end of this fist half-cycle, at which stage the vortex illu- 
strated in figure 6 has grown to its full strength and is released. A new vortex 
then forms within the tube during the second half-cycle. It is easy to show that 
(10.34) admit solutions of the form 

I- XI = at + O(t+), 
x,  = b,t8+b2t+0(t+), 

(10.35) 

in which the initial trajectory of the vortex core is in the x2 direction. We shall 
assume t,hat the approximate terms shown explicitly in (10.35) give an adequate 
characterization of the vortex path during the occurrence of the dominant 
acoustic excitation. Substituting (10.35) into (10.34) then gives 

x, E g u t ,  x, 'v (&-Am, (10.36) 

where ,LL = (3V/8n)d.  (10.37) 

If, as before, the three unit vectors (i, j ,  k) are directed respectively in the 
(1 ,  2, 3) directions, then the velocity of translation of the vortex at a time t after 
the beginning of the first half-cycle is 

v 'v tui+{+pL,t-*-&U}j. (10.38) 

The vorticity vector o is effect,ively non-zero only within a distance d (the 
transverse dimension of the mouth A )  in the x3 direction, where i t  is given by 

w = 2nrk&[x, - x , ( t ) ]  6[22 - X,(t)].  (10.39) 

This completes the specification of v and o. 

Stage 111: the acoustic response of theJlute 

The solution of the acoustic-analogy equation (10.1) for the field in free space or 
within the tube is obtained by convoluting the dipole source term with the 
appropriate Green's function. In  the case of excitation by periodic vortex 
shedding a t  the lip 0, the spatial part of the convolution involves the integral 

I ( t )  = I div (w A v) &!(y) d3y 

= -10 AV.V$:d3y. (10.40) 

Using the result (10.39) this becomes 

I ( t )  = - 2nd[rk A v.V$i], (10.41) 

where the quantity in the square brackets is evaluated at the position of the 
vortex at time t .  

Now the potential function @(y) is normalized in such a manner that i t  
represents irrotational flow into the mouth A with a total flux d' [cf. definition 
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(10.11)]. In the vicinity of the mouth $f(y) must have a functional form propor- 
tional to the real part of the right-hand side of (10.29). The constant of pro- 
portionality is chosen to make the flux through the mouth equal to d, from 
which i t  follows that, near the lip 0, 

(10.42) 

Hence, using formulae (10.33) and (10.38) we deduce that in terms of the polar 
co-ordinates (R, 9) of the vortex core a t  a time t after the beginning of the first 
half-cycle (cross-flow directed out of the mouth A )  

Now cot $4 = 1 + %U,dtS + ..., so that we can also write approximately 

I ( t )  = -- vd {Z- #p3t'J. 
2n 20 

(10.43) 

(10.44) 

If the frequency of the acoustic oscillation under consideration is equal to 
w, = nnrc/l, then this expression gives I ( t )  in the range 0 < t < n/w,. During the 
second half-cycle, when the cross-flow is directed into the mouth A ,  a similar 
argument shows that 

I @ )  = +- --&fJ(t-n/w,)-' . 
vd 2n (7u 20 1 (10.45) 

Equation (10.44), which gives the effective dipole source strength I ( t )  during 
the first half-cycle, actually represents only the leading terms in the expansion 
about t = 0 (it may be verified a posteriori that the dimensionless expansion 
parameter is proportional to (et /Z) j ) .  I n  spite of this, the result already exhibits 
the competing influences of the mean flow and the cross-flow, represented respec- 
tively by the first and second terms in the curly brackets in (10.44), on the excita- 
tion of sound in the tube. I n  order to  be consistent with the approximations 
already made, the function I ( t )  must be regarded as an efective source in much 
the same way that the step-wise behaviour of the cross-flow velocity V is an 
approximate representation of a sinusoidally varying flow in the mouth A .  The 
time dependence of I ( t )  during the first half-cycle must actually be in phase with 
the cross-flow through the mouth, i.e. of the form 

I ( t )  = INsinNw,t (0 < t < n/w,). 

Equation (10.44) does not furnish sufficient information to determine the 
coefficients of this expansion. However, on the basis that most of the acoustic 
excitation occurs a t  the beginning of the cycle, it is reasonable to suppose that 
(10.44) provides an adequate description for obtaining a t  least ajirst approxima- 
tion to the amplitude Il of the fundamental term in the sine series. 

N 

This is given by 
I~ = ~ / : ~ ( t ) s i n w , t d t ,  (10.46) 
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i.e. using (10.44) we have the approximate result 

where 

(10.47) 

It is easy to see that the formula I ( t )  N Ilsino,t, with 1, determined by 
(10.47)) can be continued into the second half-cycle (n/o, < t < 2n/wn), since i t  
also represent's the corresponding approximation to (10.45). In  other words the 
principal effect of periodic vortex shedding is embodied in the single formula 
I ( t )  = Il sin w,t. 

Taking account of the definition (10.40) of I(t) ,  i t  follows from this and the 
int,erior Green's function (10.27) that  the periodic acoustic response within the 
tube is given approximately by the convolution integral 

1 II sin w , ~  sin {wc-l(xl - I)) exp { - iw(t  - 7)) dw ch 

d sin (1 +=)) 
B = --// 2n i w d  

(10.48) 

Now the flow velocity u1 in the tube is related to  the stagnation enthalpy by 
&,/at = - aB/axl. Thus (10.48) implies that near the mouth A ( q / l  < 1)  the flow 
velocity is given by 

(10.39) 

a result which is seen to be in phase with the cross-flow velocity V ,  as required. 
During the half-cycle 0 < t < T / W ,  (w, = nnc/l), this must give rise to a flux out 
of the mouth A which is precisely equal to that represented by the constant 

21112 . nwct 
n nc.d2 -I 7 

u1 = 2 

velocity V :  
(10.50) 

the right-hand side being the net flux in the - x1 direction through a cross-section 
of the tube located several mouth diameters from A .  It follows that 

Il = - $n2n2d(sd/Z2) c V .  (10.51) 

Substituting for Il from (10.47)) and recalling that p = 3V'sf/8nr, we finally 
obtain the following expression for the magnitude V of the cross-flow velocity: 

(10.52) 

where M = Ulc. This formula determines the effective cross-flow velocity in 
terms of the dimensions s and d of the mouth A ,  the length 1 of the tube and the 
blowing Mach number ill of the incident air &ream. It is open to the following 
interpretation. 

It has been assumed that the frequency of the cross-flow velocity is equal to 
that of one of the resonant standing modes n. Such a standing wave can exist 
within the tube provided that the energy supplied by the incident air stream is 
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sufficient to overcome the dissipation in the system. Equation (10.52) indicates 

M > +n2m4(sd/Z2), (10.53) 
that this requires 

in which case the cross-flow velocity is real. The quantity on the right of this 
inequality is proportional to the rate a t  which energy is lost from the openings in 
the tube a t  A and B in the form of acoustic radiation [cf. the decay factors in 
(10.27)]. The threshold Mach number predicted by (10.53) for a particular value 
of n is therefore necessarily a minimum, since we have neglected the dissipation 
associated with viscous and heat-conduction losses a t  the walls of the tube. The 
inclusion of such effects would lead to the additive presence of further positive- 
definite terms on the right of (10.53). 

When the condition (10.53) is satisfied by several values of n it is necessary to 
decide which mode actually sounds. Our analysis is too crude to include this 
choice, but i t  is reasonable to assume that the tube sounds in that mode of oscilla- 
tion which has minimum energy a t  the given incident stream Mach number M .  
Since the wave energy within the tube is proportional to V 2 ,  it  is clear that the 
minimum energy mode will correspond to the largest value of n which satisfies 
the inequality n < ~-~(7MZ~/5sd)*.  This provides a law governing the excitation 
of the higher-order modes with increasing blowing pressure. 

A transition to one ofthe higher-order modes can also be effected by an alterna- 
tive procedure. Instead of increasing the blowing Mach number M ,  the effective 
width 2s of the mouth is decreased. It is interesting to  note that this is actually 
part of the playing technique used by the flautist in controlling the octave in 
which his instrument sounds (Coltman 1968). 

The acoustic field radiated into free space from the ends of the tube is obtained 
by evaluating a convolution integral similar to (10.48) above, but using the 
resonant part of the free-space Green's function (10.24). This leads to the 
following expression for the distant pressure field: 

p ,p,c28(ll): (w)(T) d ~ 3 n s  4 [M-+n2r4($)] '  
3 20J 

-(-l)ncos [ny( - t-- 'xL1')j} .  (10.54) 

The terms in the curly brackets correspond respectively to the sound radiated 
from the openings in the tube a t  A and B. 

Our results may be illustrated numerically by the case of a descant recorder, 
which has the approximate dimensions s = 0.2cm, d = 0-9cm, 1 = 28cm. The 
minimum threshold blowing Mach number M for the excitation of the funda- 
mental frequency ( N 500 Hz) is obtained by setting n = 1 on the right of (10.53), 
and corresponds t o  a blowing velocity of about 5ms-1. When the dissipation 
due to viscous and heat-conduction effects is taken into account, the actual 
blowing velocity must be in excess of this. However the intensity of the radiated 
soundis dependent on the details of the dissipation mechanisms only through the 
factor [M-+n2m4(sd/Z2)]h in (10.54). If it is assumed that the blowing velocity 
exceeds the actual threshold velocity by 0.5 m s-1, then (10.54) indicates that at 
a distance of about 1 m from the mouth of the recorder the overall sound pressure 
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Ievel is about 66 dB; for an excess blowing velocity of 1 m s-l the corresponding 
level is 75 dB. Both of these predictions are in excellent order-of-magnitude 
agreement with measurements made by the author. 

Note added in proof. Some very recent experimental results obtained by 
Fletcher reveal that the sounding frequency of the flute is proportional to the 
blowing pressure, i.e. n cc M2. If, in the above analysis, account is taken of 
boundary-layer dissipation, ( 10.53) becomes 

where Y and x are respectively the kinematic viscosity and the thermometric 
conductivity, The second term in the curly brackets greatly exceeds the f i s t  
(which represents radiation damping), and Fletcher’s result may t,hen be 
deduced by applying the minimum-energy argument. 

The author acknowledges the benefit he has derived from discussions of the 
material of this paper with his colleagues a t  the Cambridge Noise Research Unit, 
and in particular with Professor J. E. Ffowcs Williams. The work was supported 
by the Bristol Engine Division of Rolls Royce (1971) Ltd. 

Appendix. Low frequency Green’s functions 
Let LY(a/ax, a/at) be a linear acoustic wave operator of the type appearing in 

the main text. The Green’s function for this operator is defined to be t’he part’i- 
cular solution of the equation 

2(a/ax,  q a t )  G(X, y; t ,  7) = q x  - y) q t  - 7) (A 1) 

which satisfies the radiation condition at large distances, IxI-+oo, and the 
condition of vanishing normal derivative, aGlan = 0 ,  on any rigid surfaces in 
the flow. 

When G is known the causal solution of the problem involving an arbitrary 
source distribution, i.e. of 

LYB = f(x, t ) ,  (A 2) 

is given by the convolution integral 

B(x, t )  = sf( Y, 7 )  G(x, Y; t , 7 )  d3y d7. 

I 

(A 3) 

For acoustic waves propagating in free space we have 

9 = C-2 q a t 2  - v2, 

G(x, y; t ,  T) = - 1 s(t-7- (x- yI/c} 

47r lx-Yl 

Introduce the Fourier time transform B(x, y, w )  defined by 

G(x, Y; t , ~ )  = /O(x, y,w)exp{-iw(t-7)}dw, 
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and suppose that c ( x ,  y ,  w )  can be developed into an asymptotic series of the 
form 

I n  practice the terms in this expansion diminish rapidly with increasing n pro- 
vided that the source location y is restricted to a suitable compact region of space. 

Equations (A 5) and (A 6) imply the formal equivalence 

so that the convolution integral (A 3) becomes 

This result expresses the radiation field as an asymptotic expansion involving 
successive time derivatives of the source function. Provided that the charac- 
teristic source frequency is sufficiently small only the first few terms are signifi- 
cant. In  the approximation which takes into account only the first two terms, 
(A 7) becomes 

This result may be expressed in the alternative approximate form 

and this is defined as the low frequency Green's function of the problem. It is often 
more convenient than the separated form (A 9) because i t  is usually possible to 
renormalize the terms in the curly brackets in (A10) in such a manner that 
the formula is valid for an arbitrary source location y .  

The determination of the approximation (A 10) is sometimes facilitated by 
means of the reciprocal theorem. The following form of the theorem is appropriate 
to problems discussed in this paper. Let +A(x,  t )  be the solution of the convected 
wave equation 

which satisfies the radiation condition and has vanishing normal derivative on 
any rigid surfaces in the flow, where the convection velocity U describes a time- 
independent, incompressible, irrotational mean flow compatible with the 
conditions of the problem. 

Let +B be the corresponding solution of the reverseJEow problem, in which the 
direction of U is reversed a t  all points : 

Then the reciprocal theorem asserts that #,(x,, t )  3 $,(xA, t )  (cf. Howe 1975). 
I n  particular the result is true when U vanishes. 
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Howe (1975) has used the theorem to demonstrate that, for the case of low 
Mach number irrot’ational mean flow past an acoustically compact solid depicted 
in figure 3, the low frequency Green’s function (A 10) is given by 

1 S L - -  )X-YI +---I. M,.(X-Y) ( A 1 3 )  
4nJX-YJ \ C c (3x9 Y; t ,  7) = 

I n  this formula X is related to  the space co-ordinate x by 

xi = Xi + $t(x), (A 14) 

and defines the potential of an  incompressible irrotational flow past the solid 
whose velocity a t  large distances is of unit magnitude and in the i direction. 
Equation (A 13) describes the generation of sound for an arbitrary source position 
y and observation point x provided that a t  least one of these points is further 
than an acoustic wavelength froin the solid. 

For a spherical solid of radius R, 

Xi = z,(l +R3/21x]3), (-4 15) 

where the origin of the co-ordinates is a t  the centre of the sphere. 
I n  the case of the duct problem illustrated in figure 2, and for an acoustic 

source located at y ,  well within a characteristic wavelength from the contraction, 
the low frequency Green’s function can also be determined by means of the 
reciprocal theorem. However, the leading term in the asymptotic expansion (A 6 )  
is now O(w-l), so that the corresponding low frequency Green’s function for an 
observation point x located many wavelengths downstream of the contraction 
has the form 

where ill, = UJc, .ill, = U,/c and $*(x) is a harmonic function describing irrota- 
tional flow through the duct and normalized such that, $*-+zl as xl+co. (See 
Ffowcs Williams & Howe 1975.) 

Low frequency Green’s function for a rigid half-plane 

We now outline the derivation of (5.14). Consider a harmonic point source located 
a t  y well within an acoustic wavelength of the edge of a rigid plane which occupies 
x2 = 0, z, < 0. It is required to solve 

(c-2 az/atZ - 02) B = S(X - y) e-iot, (A 17)  

with a8/ax, = 0 on the half-plane. By the reciprocal theorem source and observer 
may be interchanged, so that the source on the right of (A 17) may be regarded 
as situated a t  a point x many wavelengths from the edge of the plane, and the 
problem reduces to determining 8 as a function of positions y close to the edge. 
This is a particular case of the classical Sommerfeld diffraction problem and can 
be solved in the manner described, for example, by Crighton I% Leppington 
(1970). I n  that paper it is shown that near the edge of the plate 

Q = 8, +as, (A 18) 
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In this result k is a unit vector parallel to the edge of the half-plane and to the 
x3 axis, and 

$*(x) = R: sin &9, (A 30) 

which is the harmonic function describing irrotational flow about the half-plane 
expressed in terms of polar co-ordinates defined by (xl, x2) = R (cos 8, sin 8). 

Reverting to the original problem, in which the source is at  y, the contribution 
8, represents the field due to a point source in the absence of scattering. The 
second term os describes the leading approximation to the scattered field. In  
applications to two-dimensional problems of the type discussed in 3 5, the source 
distribution f(x, t )  has no x, dependence, and the appropriate form for the Green's 
function is obtained by integrating the expressions in (A 19) over all values of y,. 
Since ( w / c )  Ix - y3 kl is large this is easily done by the method of stationary phase. 

Thus for the scattered field we have 

where 1x1 = (x: + x$)& is the distance of the observation point from the edge of 
the plane. Multiply this result by and integrate over all w to obtain the 
following low frequency approximation to the scattering Green's function: 

where x and y denote position vectors in the I, 2 plane. 
The corresponding contribution to the two-dimensional Green's function from 

8, is independent of y and is therefore of significance only in applications to 
problems involving monopole source distributions. 
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